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EVOLUTION OF SEDIMENTARY BASINS POWDER RIVER BASIN

Uplift of the EJighorn Mountains, Wyoming and 
Montana A Sandstone Provenance Study

ByC.E. Whipkey1 , V.V. Cavaroc1 , and R.M. Flores2

Abstract

Fluvial- and lacustrine-dominated clastic sedimentary 
rocks as thick as 1,800 m (6,000 ft) comprise the Paleocene 
Fort Union Formation and the Eocene Wasatch Formation of 
the western Powder River Basin in northeastern Wyoming and 
southeastern Montana. The systematic mineralogy of 45 
samples of channel-fill sandstone from this sequence reflects 
the uplift and erosion of the Bighorn Mountains. Samples were 
collected to study vertical changes in the mineralogy of lower 
Tertiary sandstones adjacent to the Bighorn Mountains, lateral 
variations in the composition of the upper Paleocene Tongue 
River Member of the Fort Union Formation along the eastern 
front of the mountains, and variations in the composition of 
equivalent upper Paleocene sandstones of the central and 
western parts of the basin.

Vertical changes in the mineralogy of a succession of 
Paleocene and Eocene sandstone units adjacent to the Bighorn 
Mountains most likely were produced by uplift and sequential 
erosion of the rocks that formerly overlaid the mountains. 
Uplift probably began in the middle Paleocene, during 
deposition of the Lebo Member of the Fort Union Formation, 
and continued into the Eocene. Differences in the mineralogy 
of the sandstone units along the western edge of the Powder 
River Basin that correspond to differences in the rock types 
now exposed along the crest of the Bighorn Mountains suggest 
that much of the erosional degradation of the Bighorn 
Mountains occurred during an early Tertiary tectonic episode. 
Lateral changes in the suite of unstable detrital grains within 
the Tongue River Member are compatible with facies and 
paleotransport studies that indicate a substantial eastward flux 
of detritus of early Tertiary age from the Bighorn Mountains 
into the central Powder River Basin.

Manuscript approved for publication June 26, 1990.
'Department of Marine, Earth, and Atmospheric Sciences, North 

Carolina State University, Raleigh, North Carolina 27695.
2U.S. Geological Survey, Box 25046, MS 972, Denver, 

Colorado 80225.

INTRODUCTION

The Powder River Basin covers about 56,000 km2 
(about 20,000 mi2) in northeastern Wyoming and an 
adjacent part of Montana (fig. 1) and contains Paleocene 
and Eocene terrigenous detrital sedimentary rocks as much 
as 1,800 m (6,000 ft) thick (fig. 2). Most of the detritus 
accumulated during and following rapid subsidence of the 
basin that started in the middle Paleocene (Curry, 1971; 
Flores and Ethridge, 1985; Ayers, 1986). The sedimentary 
fill of the basin is dominated by fluvial, floodplain, and 
lacustrine sediments deposited in association with a gen­ 
erally northward flowing paleodrainage system. Blackstone 
(1975) and Seeland (1985) believed that the difference in 
elevations of the Bighorn Mountains and the adjacent 
Powder River Basin in the Eocene is similar to the 
maximum present-day relief for that region (2,800 m or 
9,200 ft). This early Tertiary topography was buried beneath 
gently eastward sloping strata during the Oligocene and 
Miocene (Blackstone, 1975; Seeland, 1985). Erosion since 
that time has exposed the lower Tertiary strata, as well as 
the adjoining highlands of the Bighorn Mountains and 
Black Hills (King, 1977; Trimble, 1980; Swinehart and 
others, 1985).

The age of the beginning of uplift of the Bighorn 
Mountains has been debated. Along the western margin of 
the Powder River Basin, the Wasatch Formation of Eocene 
age (fig. 2) contains two thick conglomeratic members (in 
descending order, the Moncrief Member and Kingsbury 
Conglomerate Member). Cobbles and pebbles in the 
Wasatch are rich in feldspathic rock fragments derived from 
erosion of the Precambrian core of the Bighorn Mountains 
(Sharp, 1948; Hose, 1955; Mapel, 1959). The development 
of this uplift as a major source of sediment for the basin 
began, according to facies analysis studies, in either the late 
Paleocene (Flores and Ethridge, 1985) or the Eocene 
(Ayers, 1986). Merin and Lindholm (1986) and Ayers 
(1986) believed that most of the Paleocene detritus in the

Sandstone Provenance, Bighorn Mountains, Wyoming and Montana D1
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Figure 1. Powder River Basin and surrounding area, 
Wyoming, Montana, and South Dakota.

central part of the basin was derived from uplift of the Black 
Hills. This conclusion is based on the presence of lithic 
carbonate grains (0-11 percent) and some (0-2 percent) 
phyllitic rock fragments in uppermost sandstones in the 
Tongue River Member of the Fort Union Formation at a site 
east of the Powder River near the border of Wyoming and 
Montana.

Results of our study indicate that the Bighorn 
Mountains formed a significant highland during the late 
Paleocene (during deposition of the Tongue River Member) 
and likely began rising as early as the middle Paleocene 
(during deposition of the Lebo Member of the Fort Union). 
The results also demonstrate that the present-day pattern of 
outcrops in the Bighorn Mountains (fig. 3) was established 
during this early Tertiary episode of uplift and erosion.

LITHOLOGIC TYPES IN THE BLACK 
HILLS AND BIGHORN MOUNTAINS

Precambrian Cores

The structures that define the Powder River Basin are 
made up of similar rock types. In particular, both the 
Bighorn Mountains and the Black Hills consist of Pre­ 
cambrian igneous and metamorphic rocks flanked by thick 
sequences of upturned Paleozoic and Mesozoic strata.

The Precambrian core of the Black Hills (fig. 3) crops 
out in an area of approximately 2,200 km2 (800 mi2). It 
consists of metasedimentary rocks and metagabbro and
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Figure 2. Lithology of lower Tertiary units, western Powder 
River Basin.

minor outcrops (less than 220 km2 or 80 mi2) of granitic 
rocks. The metamorphic rocks are sillimanite to biotite in 
grade (Redden, 1975). The metasedimentary rocks include 
conglomerate, quartzite, graywacke, arkose, iron-rich strata, 
and dolomitic marble. Metabasalt, amphibolite, phyllite, 
and schist have been reported (Redden, 1975). The youngest 
and most extensively exposed granite is composed chiefly 
of quartz, albite, microcline, and muscovite; the oldest 
granitic rocks are commonly gneissic.

Precambrian crystalline rocks of the Bighorn 
Mountains crop out over a much larger area (about 4,000 
km2 or 1,500 mi2). The southern half of the area includes 
Early Archean layered granitic gneiss, amphibolite, and 
felsic gneiss. These rocks are intercalated with meta- 
graywacke, iron-bearing strata, quartzite, and other meta­ 
sedimentary rocks. The northern half of the area consists of 
Middle Archean quartz diorite and quartz monzonite that 
have been intruded by amphibolite dikes (Love and Chris- 
tiansen, 1985).

D2 Evolution of Sedimentary Basins Powder River Basin
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Upper Tertiary continental sedimentary rocks 

Eocene and Paleocene Wasatch Formation 

Paleocene Fort Union Formation

Mesozoic predominantly marine sandstone, siltstone, 
shale; minor limestone, dolomite, and evaporites

Paleozoic predominantly marine limestone; minor 
sandstone, siltstone, and shale

Precambrian schist and phyllite (Black Hills)

Precambrian quartz monzonite to diorite; minor meta- 
sedimentary rocks (Bighorn Mountains)

Precambrian granite and granite gneiss; minor metasedi- 
mentary rocks (Black Hills and Bighorn Mountains)

Basin axis

Figure 3. Generalized geology of the Powder River Basin and 
surrounding area. Modified from Love and Christiansen (1985) 
and Redden (1975).

Sedimentary Rocks of the Black Hills

The Paleozoic strata of the Black Hills are a mostly 
marine shelf sequence dominated by carbonate rocks but 
containing significant clastic beds. Cambrian and Ordovi- 
cian strata consist of a few, relatively thin beds of 
sandstone, shale, and carbonate rocks. The Silurian and 
Devonian Periods for the most part are not represented in 
the Black Hills. A thick Mississippian sequence consists of

widespread limestone, dolomite, and argillaceous dolomite. 
The Pahasapa Limestone (equivalent in part to the Madison 
Limestone), for example, is as much as 183 m (600 ft) thick. 
The Upper Paleozoic sequence contains a larger p roportion 
of detrital sedimentary rocks. The Pennsylvanian and Lower 
Permian Minnelusa Formation, for example, consists of as 
much as 213 m (700 ft) of sandstone and dolomite and 
minor chert and shale. The remaining Permian strata consist 
of thinner units of carbonate rocks, silty shale, and shale that 
grade upward into red sandstone, siltstone, shale, and 
evaporite deposits of the mostly continental Upper Permian 
and Triassic Spearfish Formation.

Jurassic and Cretaceous formations of the Black Hills 
record the return of marine conditions to the region. They 
consist of detritus-dominated, shallow-marine strata and 
minor intervening continental rocks. A major clastic unit of 
Middle and Late Jurassic age in the Black Hills, the 
Sundance Formation, consists of locally glauconitic sand­ 
stone and shale. This unit thins southeastward from almost 
225 m (740 ft) thick in eastern Montana to a wedge edge in 
central South Dakota. It is overlain by as much as 107 m 
(350 ft) of nonmarine, predominantly clastic beds of the 
Morrison Formation. Lower Cretaceous strata in the area are 
dominated by marine and nonmarine sandstone and mud- 
stone, including the Lakota Formation, as much as 168 m 
(550 ft) thick. The Upper Cretaceous Series contains large 
amounts of marine shale, typified by the Pierre Shale, as 
much as 915 m (3,000 ft) thick. This interval also includes 
the coarser grained, marginal-marine Fox Hills Sandstone 
and the nonmarine Hell Creek Formation (Lance Formation 
in Wyoming), which together are more than 350 m (1,000 
ft) thick.

Sedimentary Rocks of the 
Bighorn Mountains

Sedimentary strata of the Bighorn Mountains were 
deposited farther to the west of the stable craton than those 
of the Black Hills. Therefore, although they are similar in 
lithology, they tend to be both thicker and more marine. As 
in the Black Hills, the Paleozoic sequences are dominated 
by marine carbonate rocks, but they also contain extensive 
sandstone, siltstone, and shale. The Cambrian rocks consist 
of numerous fine-grained detrital beds, some arkosic 
sandstone and conglomerate, and a moderately thick lime­ 
stone unit (50-65 m or 164-213 ft) near the top. The 
overlying Bighorn Dolomite (60-130 m or 197-426 ft) of 
Middle and Late Ordovician age contains thin sandstone 
and shale beds. As in the Black Hills, Silurian rocks are 
absent. Devonian strata are relatively thin and consist of 
carbonate rocks, sandstone, and shale.

The Upper Devonian and Mississippian Madison 
Limestone of the Bighorn Mountains is essentially the same 
as in the Black Hills. It is as much as 270 m (886 ft) thick

Sandstone Provenance, Bighorn Mountains, Wyoming and Montana D3



and marine in origin and contains extensive limestone, 
dolomitic limestone, and dolomite beds, some of which are 
oolitic. The thick, cliff-forming, Pennsylvanian sequence 
includes feldspathic quartz sandstone, limestone, and shale. 
A thin Permian sequence of limestone, red shale, red 
siltstone, and evaporites is present. The Triassic is dom­ 
inated by the red sandstone and shale of the Chugwater 
Group (as much as 275 m or 902 ft thick).

Jurassic and Cretaceous strata of the Bighorn 
Mountains, similar to those of the Black Hills, are com­ 
posed chiefly of poorly indurated sandstones and other 
siliciclastic beds of continental and marine origin. Minor 
amounts of carbonate rocks are locally present. Jurassic 
rocks (as much as 230 m or 755 ft thick) include limestone, 
shale, and siltstone that are locally glauconitic. The 
Cretaceous sequence consists mainly of marine shale that 
commonly contains sandy intervals. The thickest of the 
Cretaceous formations is the Cody Shale, 800-1,075 m 
(2,625-3,527 ft) of shale and minor sandstone. Other thick 
units are the shale and sandstone-dominated Mesaverde and 
Lance Formations.

Provenance Implications

Similarities between outcropping rocks of the Black 
Hills and Bighorn Mountains (fig. 3) suggest that early 
Tertiary uplift and erosion of either area would have yielded 
detritus comprising the same four, potentially distinguish­ 
able mineral assemblages.

1. The earliest uplift of either range would have 
been accompanied by erosion of the thick shales, sand­ 
stones, and siltstones of the Cretaceous formations. The 
mineralogically mature sandstones and siltstones would 
have yielded recycled, durable grains such as rounded 
monocrystalline quartz and chert, whereas erosion of the 
volumetrically more important marine shales would have 
introduced abundant clay-size detritus into the nearest 
basins.

2. Further uplift would have caused erosion of the 
Permian through Jurassic rocks. These strata would have 
yielded abundant recycled quartz and cherry grains from 
both continental and marine sandstones and siltstones. 
Rapid erosion of this relatively friable sequence, along with 
minimal transportation and quick burial, might have led to 
the preservation of generally unstable constituents such as 
glauconite. Minor amounts of carbonate fragments also 
could have survived transportation from the relatively 
unimportant outcrops of limestones and dolomites.

3. With exposure of the Paleozoic shelf sequence, 
large quantities of marine limestones, dolomites, and silici- 
fied carbonate rocks would have been truncated. During 
rapid uplift much of this material should have been 
mechanically eroded to form detritus dominated by recycled 
quartz grains but also exceptionally enriched in detrital 
carbonate fragments. These sediments would also have

contained chert grains and possibly sparse, recycled feldspar 
grains derived from the mature Paleozoic arkosic 
sandstones.

4. Only the Precambrian rocks of the two areas 
would provide significantly different erosional detritus. The 
core area of the Bighorn Mountains is composed mostly of 
diorite, monzonite, and gneiss. Erosion of these rocks would 
have yielded abundant quartz and feldspar and some 
relatively large mica booklets. Smaller quantities of slate, 
phyllite, and schist lithic fragments would have been eroded 
from the periphery of the core. The core of the Black Hills, 
on the other hand, is especially rich in metasedimentary 
rocks such as quartzite, slate, phyllite, and schist. The only 
rocks that could have yielded sand-sized grains of feldspar 
in any abundance are the areally small bodies of meta- 
arkose and granite.

STUDY APPROACH

Sample Collection and Preparation

The three members of the Fort Union Formation and 
the Kingsbury Conglomerate Member and Moncrief 
Member of the Wasatch Formation were sampled along the 
western margin of the basin (fig. 3) to determine if 
differences in the petrography of the sandstone units can be 
used to accurately define the start of uplift of the Bighorn 
Mountains. The Tongue River Member of the Fort Union 
Formation was sampled at additional localities in the 
northern and central parts of the basin to determine if lateral 
changes in its mineralogy correspond to lateral changes in 
rocks that presently crop out along the axis of the Bighorn 
Mountains. All samples were obtained from fluvially 
dominated sandstones to minimize compositional variations 
related to changes in depositional environment (Davies and 
Ethridge, 1975). The stratigraphic and geographic positions 
of these samples are described in Whipkey (1988). Samples 
were restricted to the fine to medium sand range (1-3 phi) 
to minimize compositional variations related to differences 
in grain size (Mann and Cavaroc, 1973; Odom and others, 
1976).

Thin sections of selected samples (many of which 
required impregnation with epoxy) were prepared. A blue 
epoxy impregnation aided in evaluating grain diagenesis by 
accentuating pore geometry. Most thin sections were 
stained with sodium cobaltinitrite to aid in potassium 
feldspar identification.

Methods of Study

The 45 samples used in this study (table 1) were 
selected to obtain a representative distribution from the 
Tertiary stratigraphic interval exposed along the eastern

D4 Evolution of Sedimentary Basins Powder River Basin



Table 1. Stratigraphic and geographic locations of samples in study 
[Sample areas shown by number on figures 4 and 7]

Sample 
number

1
2-5
6-7
8-13

14-16
17-26
27-30
31-36
37-45

Rock unit
Tullock*
Lebo*
Lower part of Tongue River*
Lower part of Tongue River*
Upper part of Tongue River*
Upper part of Tongue River*
Wasatch Formation
Upper part of Tongue River*
Upper part of Tongue River*

Geographic location
Southwestern part of basin
Southwestern part of basin
Castle Rock area
TA Hills area
Castle Rock area
TA Hills area
Western margin of basin
Tongue River area
Powder River area

Sample area
1
2
4
3
4
3
4
5
6

*Member of the Fort Union Formation.

flank of the Bighorn Mountains, as well as to maximize 
geographic distribution within the Tongue River Member. 
Only four impregnated thin sections were made from 
sandstones of the Wasatch; their modal grain compositions 
are compatible with sections prepared from disaggregated 
sand grains of the Wasatch. All Tongue River outcrop and 
core sandstones collected from east of Gillette (fig. 3) were 
too fine grained to be included in this study.

Apparent long axes of 50 quartz grains were meas­ 
ured in each thin section (Connor and Perm, 1966) using 
Chayes' mechanical point-counting technique (Chayes, 
1956; Griffiths, 1967). Students' t testing (0.05 level) of 
data from a small sample of the thin sections confirm that 50 
counts are adequate to ensure precise results.

The thin sections were then point counted for modal 
composition by Chayes' technique using at least 100 grain 
counts. Matrix and cement types were also tallied. Iterative 
chi-square testing (0.05 level) indicates that there is no 
significant difference in modal grain composition (quartz, 
feldspar, mica, rock fragments, matrix and cement) between 
75 and 100 framework grain counts for the most mineral - 
ogically complex sandstone samples. Hence, two totals are 
used in the analyses of modal composition: (1) total grains 
counted (more than 100 per thin section), and (2) total 
counts of grains plus matrix and cement (as many as 252 
counts per thin section). These point-count data are 
presented in tables 2-6.

Compositional Data Testing

Chi-square testing of enumeration data was used to 
define broad mineralogical facies and petrographic trends 
that occur vertically in the Fort Union and Wasatch 
Formations along the western margin of the basin and 
laterally within the Tongue River Member. Data were 
converted to percentage for Students' t, analysis of variance 
(ANOVA), and Duncan's multiple range (DMR) tests that 
were used in comparisons of individual mineral con­ 
stituents. Before testing, percentage compositional data 
were treated with the standard mathematical transformation,

X = arcsin squareroot percent,

that is applied to binomially distributed data (Griffiths, 
1967) or to data whose variances are likely to be 
proportional to their means (Ostle, 1963). Individual test 
formats and results are given in Whipkey (1988).

SANDSTONE MINERALOGY OF THE 
BASIN

Classification

The lower Tertiary sandstones (table 2) of the Powder 
River Basin tend to be consistently rich in quartz and 
contain variable amounts of detrital chert, feldspar, and rock 
fragments (including carbonate grains). Samples from the 
Tullock, Lebo, and lower part of the Tongue River com­ 
monly contain moderate amounts of chert (as much as 23 
percent) and are sublitharenites of the chert-arenite variety 
(Folk, 1980). Sandstones of the upper part of the Tongue 
River also contain moderate amounts of chert (as much as 
20 percent) and substantial amounts of carbonate rock 
fragments (as much as 23 percent). They plot near Folk's 
boundary between calclithite and chert-arenite. The four 
samples from the Wasatch Formation are rich in feldspar; 
individual samples contain as much as 40 percent feldspar. 
Due to low levels of carbonate (less than 1 percent) and 
cherty (4 percent) rock fragments, they plot in the subarkose 
to arkose range.

Grain Types

Quartz

Quartz is the dominant detrital grain in the sand­ 
stones, and monocrystalline quartz is the most common 
type. Extinction varies from almost straight to strongly 
undulatory (table 3). Common inclusions include rutile
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Table 2. Modal compositions of samples
[Sample localities shown on figures 4 and 7 by sample area number (see table 1. Rk. frag., rock fragments)]

Sample
number

1

Percentage of framework grains
Quartz

75

Feldspar

9

Rk. frag.

16

Mica

0

Other
TULLOCK*

0

Percentage of total sample
Grains

95

Cement

0

Matrix

5

n

106
LEBO*

2
3
4
5

74
65
78
83

2
10

8
7

22
24
13
10

1
1
0
0

1
0
1
0

56
90
95
86

43
1
2
0

1
9
3

14

180
114
105
116

LOWER PART OF TONGUE RIVER*
6
7
8
9

10
11
12
13

75
92
79
90
75
85
78
80

5
3
0
1
3
0
2
3

17
4

18
7

18
13
19
15

2
1
3
2
1
1
0
2

1
0
0
0
3
1
1
1

77
68
85
94
77
76
94
67

0
0
0
0
1
1
0
0

23
32
15

6
22
23

6
33

130
147
120
110
142
143
106
176

UPPER PART OF TONGUE RIVER*
14
15
16
17
18
19
20
21
22
23
24
25
26

93
73
77
61
65
66
73
69
65
69
57
70
66

4
0
5
2
4
3
1
4
2
1
4
1
2

3
27
18
34
29
27
24
24
31
30
37
27
31

0
0
0
0
0
1
0
0
0
0
0
0
1

0
0
0
4
2
3
2
3
2
0
2
2
0

71
76
72
71
93
73
84
85
84
97
76
86
86

0
20
13

3
2
4
0
3
2
0
6
2
3

29
4

14
25

5
23
16
13
13

3
18
11
11

141
131
138
154
115
151
125
119
128
121
136
125
132

WASATCH FORMATION
27
28
29
30

56
70
77
50

21
20
13
40

16
4
7
1

5
4
1
7

2
2
2
2

53
51
54
57

44
44
45
41

3
5
1
2

195
198
185
175

UPPER PART OF TONGUE RIVER*
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

56
58
54
72
57
57
56
68
60
62
50
63
67
44
72

8
21

7
9
7

10
7

15
9

16
4

18
4

11
6

35
16
34
18
33
31
35
14
29
22
41
15
10
42
20

0
1
4
1
2
1
0
0
2
0
2
2
2
1
0

1
4
1
0
0
1
2
4
0
1
3
1

17
2
2

81
74
66
40
78
89
73
58
54
52
70
81
79
87
62

9
11
17
57
18

2
1

38
42
47
21

3
9
5

36

10
15
17

3
4
9

26
4
4
1
9

16
12

8
2

124
136
152
252
127
112
138
189
188
198
149
129
135
118
179

*Member of the Fort Union Formation.
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Table 3. Quartz extinction types and feldspar twin types expressed as percentage of total framework grains
[Sample localities shown on figures 4 and 7 by sample area number (see table 1). Str., straight to slightly undulose; Undl., strongly undulatory;
Poly., polycrystalline grains with three or less component crystals (<3), or more than three crystalline structures (>3) in the grain]

Sample
number

Quartz extinction
Str. Undl. Poly. <3 Poly. >3

Feldspar twinning
Untwinned Gridded Albite

TULLOCK*
1 42 27 5 2 9 1 0

LEBO*
2
3
4
5

59
5

49
57

13
62
23
21

3
0
2
4

0
0
4
1

2
9
8
6

0
0
0
1

0
1
0
0

LOWER PART OF TONGUE RIVER*
6
7
8
9

10
11
12
13

42
68
67
86
51
68
50
76

19
22

9
6

23
19
20
11

6
1
2
1
3
3
4
3

8
1
3
0
6
3
4
4

5
3
0
1
3
0
2
3

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

UPPER PART OF TONGUE RIVER*
14
15
16
17
18
19
20
21
22
23
24
25
26

73
52
56
52
58
53
73
44
55
63
46
61
58

18
19
18
13
10
14
 

23
14

9
9

12
14

2
2
2
1
0
3
4
3
0
5
1
2
2

0
0
1
1
1
3
 
0
1
4
3
1
1

3
0
5
2
4
2
1
4
2
0
3
1
1

1
0
0
0
0
0
0
0
0
1
1
0
1

0
0
0
0
0
1
0
0
0
0
0
0
0

WASATCH FORMATION
27
28
29
30

38
45
57
33

15
17
12
12

1
4
4
3

4
5
4
2

20
19
12
35

1
0
1
1

1
1
0
4

UPPER PART OF TONGUE RIVER*
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

26
36
23
37
36
25
48
55
39
45
36
46
58
34
62

14
18
15
21

8
14
4

12
16
13

7
15

6
3
9

5
4
2
6
0
6
1
4
4
2
2
0
2
3
8

11
0

14
9

13
12
4
4
2
3
8
5
6
5
2

8
18

6
8
6

10
4
9
4

14
4

14
3
9
5

0
1
1
1
1
0
1
5
2
0
0
0
1
0
0

0
2
0
0
0
0
2
2
3
2
0
5
0
3
2

*Member of the Fort Union Formation.
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Table 4. Rock-fragment types expressed as percentage of total framework grains 
[Sample localities shown on figures 4 and 7 by sample area number (see table 1)]

Sample
number

Granitie
rock fragments

Metamorphic Sedimentary rock fragments
rock fragments Silt/shale Carbonate Chert

Glauconite
present?

TULLOCK*
1 2 1 1 0 12 No

LEBO*
2
3
4
5

0
0
0
0

1
0
0
0

1
2
0
2

0
0
0
0

20
23
13

8

Yes
Yes
No
Yes

LOWER PART OF TONGUE RIVER*
6
7
8
9

10
11
12
13

0
0
0
0
0
0
0
0

2
0
0
0
2
0
0
1

2
0
0
0
1
0
0
4

0
0
0
0
0
0
0
0

13
4

18
7

17
14
19
13

Yes
No
No
No
No
Yes
Yes
Yes

UPPER PART OF TONGUE RIVER*
14
15
16
17
18
19
20
21
22
23
24
25
26

1
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
7
0
0
0
1
0

0
0
0
0
0
1
0
0
6
5
2
0
0

2
18
15
17
16
16
18
14
23
15
13
22
21

0
9
3

20
15
12

7
3
4

15
23

6
14

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

WASATCH FORMATION
27
28
29
30

0
2
0
1

0
0
0
0

2
2
1
0

0
0
2
0

12
2
3
0

No
No
Yes
Yes

UPPER PART OF TONGUE RIVER*
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

3
0
1
1
2
0
1
2
0
0
0
0
0
0
1

4
1
3
5
7
6
0
0
0
1
0
4
2
0
0

3
0
7
2
5
6
7
1
3
4
6
2
3

12
2

9
8

12
0
5
8
7
4
4
5

26
0
1

14
6

16
7

11
10
14
11
20

8
22
12
11
10

5
17
13

No
No
Yes
No
Yes
No
Yes
No
No
No
Yes
Yes
No
No
No

*Member of the Fort Union Formation.
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Table 5. Grain counts of chert types (inclusions)
[Sample localities shown on figures 4 and 7 by sample area number (see table 1)]

Sample
number

Normal
(incl. free)

Carbonate
inclusions

Quartz
blebs Chalcedony Cloudy Clay

Aligned
mica

Detrital
grains Total

TULLOCK*
1 3 0 4 0 0 2 0 3 12

LEBO*
2
3
4
5

6
6
3
4

0
1
0
0

9
5
5
1

3
2
2
1

0
4
0
0

0
0
0
1

1
5
0
1

1
0
3
0

20
23
13

8
LOWER PART OF TONGUE RIVER*

6
7
8
9

10
11
12
13

4
2
5
4
8
2
5
6

2
0
0
0
0
1
0
0

2
1
3
3
7
2
5
1

0
1
0
0
0
0
0
0

2
0
0
0
0
6
0
0

3
0
5
0
2
3
0
3

0
0
5
0
0
0
0
3

0
0
0
0
0
0
0
0

13
4

18
7

17
14
10
13

UPPER PART OF TONGUE RIVER*
14
15
16
17
18
19
20
21
22
23
24
25
26

0
3
2
2
7
5
5
3
1
6
1
0
2

0
0
0
1
0
0
1
0
0
1
1
1
1

0
1
0
6
5
3
1
0
2
4
2
3
3

0
1
0
0
1
0
0
0
0
2
0
1
1

0
0
0
0
1
1
0
0
1
0
0
1
4

0
0
0
3
0
0
0
0
0
0
2
0
0

0
0
0
8
1
3
0
0
4
0
0
0
3

0
0
0
0
0
0
0
0
1
2
0
0
0

0
5
2

20
15
12

7
3
9

15
6
6

14
WASATCH FORMATION

27
28
29
30

3
1
2
0

0
0
0
0

4
0
0
0

0
0
0
0

4
0
1
0

1
0
0
0

0
0
0
0

0
1
0
0

12
2
3
0

UPPER PART OF TONGUE RIVER*
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

2
4
3
2
1
5
4
4

10
3
3
4
2
6
2

1
0
0
0
0
0
1
0
1
1
0
0
0
0
3

1
0
2
0
3
2
2
1
6
3
2
4
2
6
4

0
0
0
0
0
0
1
0
2
0
0
0
0
0
0

11
2
5
0
4
3
8
1
0
3
0
0
0
2
1

0
0
1
6
2
0
1
2
3
1
3
1
1
2
3

1
0
0
1
4
0
0
0
0
0
1
1
0
1
0

0
1
0
1
0
0
3
0
0
1
2
0
0
0
0

16
7

11
10
14
11
20

8
22
12
11
10

5
17
13

*Member of the Fort Union Formation.
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Table 6. Quartz-grain apparent long axes (phi scale) and rounding (Powers' scale)
[Sample localities shown on figures 4 and 7 by sample area number (see table 1). n, is number of quartz grains measured]

Sample

number n

Quartz apparent

Mean ($.

long axes

) Sorting n

Quartz rounding

Power's

TULLOCK*
1 50 1.93 0.45 50 3.5

LEBO*
2
3
4
5

50
50
50
50

2.57
2.40
2.26
2.43

0.44
0.55
0.60
0.49

50
50
50
50

3.7
3.7
3.9
3.6

LOWER PART OF TONGUE RIVER*
6
7
8
9

10
11
12
13

50
50
50
50
50
50
50
50

2.31
2.84
2.99
2.91
3.16
2.86
2.30
2.42

0.60
0.58
0.45
0.43
0.49
0.60
0.61
0.61

50
50
50
50
50
50
50
50

3.4
3.8
3.5
3.4
3.3
3.3
3.5
3.4

UPPER PART OF TONGUE RIVER*
14
15
16
17
18
19
20
21
22
23
24
25
26

50
50
50
50
50
50
50
50
50
50
50
50
50

2.72
2.29
2.32
3.09
2.02
2.79
1.55
3.16
3.06
1.08
2.33
2.35
2.38

0.55
0.68
0.66
0.41
0.73
0.62
0.42
0.60
0.54
0.46
0.74
0.78
0.71

50
50
50
50
50
50
50
50
50
50
50
50
50

3.9
4.5
4.2
3.1
3.4
3.3
3.9
3.3
3.4
4.1
3.9
3.7
3.5

WASATCH FORMATION
27
28
29
30

50
50
50
50

2.26
2.57
1.64
1.87

0.62
0.62
0.74
0.56

50
50
50
50

3.7
3.1
3.8
3.4

UPPER PART OF TONGUE RIVER*
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

50
50
50
50
50
50
50
50
50
50
50
50
50
50
50

2.44
2.71
2.30
2.69
2.31
2.27
2.33
1.94
2.03
2.17
2.57
2.08
2.82
2.64
2.30

0.39
0.40
0.40
0.46
0.51
0.50
0.44
0.49
0.73
0.52
0.57
0.37
0.68
0.51
0.48

50
50
50
50
50
50
50
50
50
50
50
50
50
50
50

2.8
2.7
2.8
2.7
2.6
2.8
2.7
2.8
2.7
2.9
2.9
2.7
3.1
3.0
2.8

*Member of the Fort Union Formation.

needles, mica flakes, tourmaline, zircon, and various minor 
opaque minerals. Less common are inclusions of vermicular 
chlorite.

Semicomposite grains (Folk, 1980) are not common. 
Other varieties of polycrystalline quartz were divided into

two categories: those containing three or fewer crystals (that 
is, not in optical alignment) and those containing more than 
three crystals. Included in the latter group is schistose 
"stretched" polycrystalline quartz, which commonly 
contains aligned mica crystals and (or) crenulate subgrain
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boundaries. Polycrystalline quartz composed of three or 
fewer crystals is probably derived from granitic or high- 
rank metamorphic source terranes (Basu and others, 1975).

Feldspar

Untwinned feldspar, generally orthoclase, is the most 
common type of feldspar (table 3). Albite and carlsbad- 
albite feldspar twins were identified simply as plagioclase. 
Gridiron (tartan) twinned feldspars were assumed to be 
microcline. Perthitic grains are relatively rare. Alteration 
due to sericitization and replacement by calcium carbonate 
is common, especially in samples of the upper part of the 
Tongue River and the Wasatch. If identifiable, a partially 
replaced grain was counted as the original grain. A few 
feldspar overgrowths were observed.

Granitic Rock Fragments

Granitic rock fragments (GRF's) (table 4) were 
distinguished by the presence of relatively large interlocked 
crystals of quartz and feldspar, with or without mafic 
minerals or mica. These are the products of either granitic or 
gneissic source terranes. Few were noted, probably in part 
because of the fine grain size of the sandstones.

Metamorphic Rock Fragments and Mica

Common phyllosilicate minerals include muscovite 
and biotite booklets, which are present in almost all 
samples, and chlorite, which is much less common. Schist­ 
ose and phyllitic metamorphic rock fragments (MRF's) 
(table 4) were identified by the parallel orientation and 
relatively large size of their constituent mica crystals. Slate 
fragments are very fine grained and difficult to distinguish 
from intraformational shale grains (relict "clay balls"). 
These were therefore combined into a single category 
(low-grade MRF's) unless other evidence, such as included 
detrital quartz silt, was observed.

Sedimentary Rock Fragments

A wide variety of chert and siliceous grains forms a 
major category of sedimentary rock fragments (SRF's). The 
grains were grouped into eight basic types, based partly on 
the presence and nature of mineral inclusions (table 5): 
(1) clean, inclusion-free chert; (2) chert containing calcium 
carbonate fragments, which probably are remnants of the 
replacement of limestone or dolomite; (3) chert containing 
small "blebs" of megaquartz that probably is recrystallized 
chert because of its clarity, irregular shape, and gradational 
boundaries with the surrounding microcrystalline quartz;
(4) grains composed partly or totally of chalcedony;
(5) siliceous rock fragments ("cloudy chert") that contain 
dispersed, very fine grained clay or mud; chert containing

significant coarse clay or fine-grained mica in (6) random or 
preferred (7) orientation; and (8) chert containing detrital 
grains (silt-size quartz or mica).

Detrital calcium carbonate grains are a major SRF 
type (table 4). Both micritic and sparry calcite are common. 
The latter was commonly recognized by its aggregate nature 
or rhombic habit.

Some shale fragments were distinguished from slate 
by the inclusion of silt-size detrital quartz. Siltstone, 
although fine grained, commonly was distinguished from 
metaquartzite by the presence of intergranular clayey matrix 
material within the rock fragment. These SRF's are also 
designated on table 4.

Glauconite

Detrital glauconite is a common trace constituent 
(table 4) and was identified by its pelletlike shape, aggregate 
nature, and green absorption color, which masks birefrin­ 
gence. Some glauconite is surrounded by a reddish rim of 
oxidized iron that has been leached from the grain. 
Although generally found as a discrete grain, in a very few 
samples several glauconite pellets were within single detri­ 
tal calcite grains.

Glauconite is thought to form only in marine environ­ 
ments (Folk, 1980). Although not a durable mineral, it is 
reported to survive limited sedimentary transport and has 
thus been found in nonmarine sedimentary rocks (Galliher, 
1935; Pettijohn and others, 1972; Selley, 1978). Survival 
during prolonged transportation is not likely, however, 
because of its unstable nature, and its presence in a 
freshwater deposit is a reliable indicator of short, rapid 
transport and quick burial.

Cementation and Diagenesis

Calcium carbonate in the form of calcite is the most 
common cementing agent. It makes up more than 40 percent 
by volume of each of the Wasatch samples but generally 
less than 6 percent of the Paleocene rocks along the western 
margin of the basin (samples 1-30, table 2). Calcite cement 
probably formed as a result of recrystallization of detrital 
calcium carbonate grains or as a result of their dissolution 
and subsequent calcite precipitation. Evidence to support 
these possibilities includes the large size of many cement- 
filled pores, which indicates that their volume was once 
occupied by grains. Partly recrystallized (or dissolved) 
detrital carbonate was found embedded within the cement of 
some samples.

Partial replacement of feldspar and, to a much lesser 
extent, quartz by calcite cement is fairly common, 
especially in the Wasatch samples, which are very rich in 
both feldspar grains and carbonate cement. In some 
samples, ghosts of twinned former plagioclase grains 
indicate that replacement was almost complete.
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Some samples contain small amounts of silica or 
feldspar as overgrowths, and authigenic clay was noted in 
very few samples; however, these materials are very minor 
cementing agents. No evidence of fine-clay matrix grading 
to larger clay or mica crystals was found.

VERTICAL CHANGES IN 
PETROGRAPHIC FACIES OF 
LOWER TERTIARY SANDSTONES

Sample Localities

Samples from the Paleocene Fort Union and the 
Eocene Wasatch Formations were collected at outcrops 
along the western margin of the basin (fig. 4) in an attempt 
to document the time of Tertiary uplift of the Bighorn 
Mountains. Sample localities were selected as close as 
possible to the uplift in order to minimize the possibility 
of contamination of the samples with detritus from other 
sources and to ensure the least possible modification of 
the mineralogy of the samples due to the effects of paleo- 
transport.

107

43°  

42'

50 MILES

Figure 4. Sample areas used to determine vertical variation in 
mineralogy in the western Powder River Basin. Areas 1 and 2 
are referred to in text as southwestern basin, area 3 as TA Hills 
area, and area 4 as Castle Rock area. Sample numbers for areas 
given in table 1.

The Tullock Member of the Fort Union Formation is 
the lowermost Tertiary unit of the Powder River Basin, and 
some studies suggest that the basin did not exist during 
deposition of this unit (see, for example, Curry, 1971). 
Because paleocurrent directions in the Tullock are contro­ 
versial (see, for examples, Flores and Ethridge, 1985; 
Ayers, 1986), only one crossbedded channel sandstone 
(area 1, fig. 4) was collected from this interval as a check for 
consistency with the younger sandstones.

Samples of the Lebo Member (middle Paleocene) 
were collected from four localities in areas 1 and 2 (fig. 4). 
The Lebo is a mudstone-dominated lacustrine unit along the 
western margin of the basin but contains some coarse to 
pebbly, crossbedded, channelized sandstone.

Unlike the Tullock and Lebo, the upper Paleocene 
Tongue River Member is rather extensively exposed. 
Samples of the lower part of the Tongue River were 
collected at several localities in the southwestern part of the 
basin (areas 1 and 2, fig. 4), as well as from pebbly channel 
sandstones of the TA Hills (area 3). An upper, con­ 
glomeratic facies of the member (Weaver and Flores, 1985) 
also was sampled (area 4, fig. 4).

Samples from sandy parts of the Kingsbury Con­ 
glomerate Member and the Moncrief Member of the Eocene 
Wasatch Formation were also collected along the western 
margin of the basin near Castle Rock (area 4, fig. 4). 
Pebbles and cobbles in the Kingsbury, a distal fan deposit, 
are composed predominantly of chert and carbonate but also 
contain rare granitic fragments (Hose, 1955). The Moncrief, 
a proximal fan deposit, contains mainly coarse sandstone 
and granitic and gneissic cobbles and boulders.

- Petrographic Facies

Three stratigraphically sequential petrographic facies 
are apparent on the ternary diagram of figure 5. The diagram 
contains the poles Q (quartz and chert), F (feldspar and 
granitic rock fragments), and L (lithic fragments, including 
carbonate grains). Quartz (including polycrystalline quartz) 
and chert were placed at the same pole (Q) because of their 
stability during transport and because of their possible 
significance concerning source terrane. Feldspar and 
granitic rock fragments (GRF's) were placed at a second 
pole (F) because of their utility as possible indicators of 
intrusive igneous or higher grade metamorphic source 
terranes. Very few GRF's are actually present, so their 
inclusion at the F pole has a negligible effect on the ternary 
plots. Unstable lithic fragments (L) include metamorphic 
rock fragments (MRF's) and sedimentary rock fragments 
(SRF's). Although detrital carbonate grains are commonly 
excluded from ternary plots because of their instability and 
the possible ambiguity as to their source, they were included
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Figure 5. Ternary diagram showing the composition of 
sandstones along the western margin of the Powder River 
Basin. Petrographic facies (described in text): solid circle 
indicates upper facies; open square indicates middle facies; 
open circle indicates lower facies. Q indicates quartz plus 
chert; F indicates feldspar plus granitic rock fragments; L 
indicates lithic fragments.

as lithic fragments because (1) they are very common in 
some samples, and (2) limestone and dolomite beds 
comprise much of the Paleozoic sequence in nearby 
potential source areas.

One petrographic facies forms a cluster very near the 
quartz (Q) pole. It includes the Tullock and Lebo Members 
and the lower part of the Tongue River Member. Samples 
from the upper part of the Tongue River form a middle 
facies, which, as a whole, plots more toward the lithic 
fragments (L) pole. Samples of the Wasatch Formation 
comprise a third facies marked by abundant feldspar and 
relatively low rock-fragment content. Chi-square testing 
(0.05 level) confirms that significant mineralogical 
differences exist between the three facies, primarily due to 
the higher amounts of feldspar in the upper facies and 
carbonate fragments in the middle facies.

Textures

The samples were selected in the field to be relatively 
uniform in grain size (table 6). Most samples were in the 
fine sand range (2-3 phi), although a few are in the medium 
sand range (1-2 phi). Based on 50 measurements per thin 
section of quartz apparent long axes, mean values for the 
three petrographic facies are lower, 2.56 phi (s=0.35 phi); 
middle, 2.40 phi (s=0.60 phi); and upper, 2.08 phi (s=0.41). 
No major differences were observed in quartz grain 
roundness between the three petrographic facies. Average 
numerical values (Power's scale, in Folk, 1980) based on 50

observations per thin section are lower, 3.5; middle, 3.7; and 
upper, 3.5. Thus, most grains are in Power's subrounded 
range. The sandstones contain substantial amounts of matrix 
material (as much as 33 percent) and thus are texturally 
immature. This type of textural inversion (Folk, 1980) can 
be caused by relatively short transport of recycled 
sedimentary strata.

Mineralogy

Plots of percentage composition of individual mineral 
constituents (fig. 6) expand and illuminate trends shown in 
the ternary diagram. The lower (quartzose) facies is 
represented by samples 1-13. Note in particular the lack of 
carbonate grains. The increase in rock fragments in the 
middle facies (samples 14-26) is due mainly to an abrupt 
and large increase in detrital carbonate grains (calcite and 
dolomite). The upper facies (samples 27-30) is marked by 
a substantial increase in feldspar and mica. Cherty frag­ 
ments and, to a much greater extent, carbonate fragments 
decrease in this facies. Carbonate cement is very prominent 
in the upper facies.

Quartz

Total quartz in the lower petrographic facies is almost 
80 percent (s=7.2 percent) of framework grains but only 
69.5 percent (s=8.8 percent) in the middle facies. Total 
quartz (63 percent, s=12.4 percent) is also low in the upper 
(Wasatch Formation) facies. ANOVA-DMR tests (0.05 
level) of transformed data indicate that total quartz 
decreases significantly between the lower and upper facies. 
Polycrystalline quartz (including metamorphic quartz) 
accounts for 6.4 and 4.4 percent of total quartz in the lower 
and middle facies, respectively, and 10.3 percent in the 
upper facies (significant in ANOVA-DMR tests, 0.05 
level).

The decrease in total quartz above the lower petro­ 
graphic facies reflects the increase in carbonate rock 
fragments in the middle and upper facies and feldspar in the 
upper facies. The moderate increase in polycrystalline 
quartz in the upper facies may be attributed either to shorter 
transport distances (these Wasatch Formation samples are 
from alluvial fans) or to deeper erosion levels in the igneous- 
metamorphic core of the Bighorn Mountains.

Carbonate Rock Fragments

The detrital carbonate content of the lower quartz-rich 
petrographic facies is almost zero. The upward decrease in 
quartz in the middle facies (upper part of the Tongue River 
Member) is accompanied by an increase in detrital 
carbonate (calcite and (or) dolomite) to more than 15 
percent (s=2.9 percent) of framework grains. Detrital
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Rock unit Sample 
number

Percentage of framework grains

Quartz Feldspar Mica Carbonate 

40 100 0 40 0 10 0 40

Chert Glauconite 
0 40 present?

Other constituents

Matrix Cement 

0 50 0 60

Wasatch 
Formation

30
29
28
27

Tongue
River

Member

26
25
24
23
22
21
20
19
18
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16
15
14

Lebo 
Member

Tullock 
Member

13
12
11
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9
8

7
6
5
4
3
2
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Figure 6. Point-count data for sandstones from the western margin of the Powder River Basin. Clastic grains are given as 
percentages of total framework grains; matrix and cement are given as percentages of the total volume of the sample. The presence 
of detrital glauconite (always less than 1 percent) is indicated. Point-count values are given in tables 2-6.

carbonate content then drops to a very low level (less than 
1 percent) in the upper facies. ANOVA-DMR tests (0.05 
level) confirm that detrital carbonate is significantly more 
abundant in the middle facies than in either the lower or 
upper facies.

The most likely source of the large quantities of 
carbonate fragments in the middle facies is the extensive 
Paleozoic limestone and dolomite beds of the Bighorn 
Mountains. The drastic decrease in detrital carbonate in the 
upper facies may be related to the greatly increased abun­ 
dance of calcite cement.

Cherty Fragments

Chert makes up about 13.5 percent of framework 
grains in the lower petrographic facies, 9.5 percent in the 
middle facies, and only about 4 percent in the upper facies. 
ANOVA-DMR tests detect significant differences (0.05 
level) only between the lower and upper facies. Cherty 
fragments are very diverse in these facies (table 5). Normal 
microcrystalline chert is most common, but chalcedony and 
grains containing various inclusions are also present. Too 
few chert grains were tabulated in point counts for statistical 
tests between the different varieties. Subjectively, the data 
do suggest that samples of the Tullock and Lebo contain 
slightly more chalcedony than those of the overlying

Tongue River and Wasatch. Chert grains of the middle 
facies more commonly have carbonate inclusions than those 
of the other facies.

Feldspar

Untwinned feldspar (generally orthoclase, 91 percent 
of total feldspar) is most common, but smaller amounts of 
grid-twinned (microcline, 5 percent) and albite-twinned 
(plagioclase, 4 percent) feldspar also are present. A few 
perthitic grains were noted. No systematic vertical changes 
in feldspar types were observed.

Feldspar is a very minor component in the Paleocene 
sandstones, only about 3 percent of framework grains in the 
lower and middle facies; however, it makes up more than 23 
percent of grains in the upper facies (significant on 
ANOVA-DMR, 0.05 level). In rocks of the upper facies, 
feldspar has been diagenetically replaced by calcite cement, 
and thus these percentages may be lower than the original 
feldspar content.

The increase in feldspar in the upper facies is 
probably associated with erosion of the Precambrian core of 
the uplift. This inference is supported by the previously 
noted concurrent increase in polycrystalline quartz. The 
relatively low quantities of feldspar in the lower and middle 
facies may have been derived from recycled Paleozoic and 
Mesozoic arkosic sandstones.
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Mica

Muscovite, as well-developed booklets, is the most 
common mica; biotite and chlorite are less common. Mica 
content is less than 1 percent in the lower and middle facies 
(a few samples contain as much as 3 percent) and only 4 
percent in the upper facies. The increase in well-developed 
mica booklets in the upper facies (significant on ANOVA- 
DMR tests, 0.05 level) agrees with the preceding evidence 
for Eocene exposure of the Precambrian granitic and 
gneissic core of the Bighorn Mountains.

Other Rock Fragments

Rock fragments other than chert and carbonate are not 
abundant in these rocks. Rocks of the upper facies contain 
a few (1-2 percent) granitic fragments, and one sample of 
the Tullock contains 2 percent granitic fragments.

Sedimentary rock fragments, as well as high-grade 
(schistose) and low-grade (phyllitic and slate) metamorphic 
rock fragments, are present in small amounts (generally less 
than 2 percent) throughout the interval. These amounts are 
well within the range of phyllite rock fragments reported by 
Merin and Lindholm (1986) from the basin center.

Glauconite

Glauconite is present in all samples of the Tongue 
River and Wasatch, although always in volumes of less than 
1 percent of the grains. It most probably was derived from 
the nearby, friable, glauconite-bearing Mesozoic strata of 
the eastern Bighorn Mountains. Although difficult to 
characterize quantitatively because of the small amounts, 
glauconite probably is much more common in the middle 
petrographic facies than in either of the others.

Discussion and Interpretation

The three vertically sequential sandstone petrographic 
facies along the western margin of the Powder River Basin 
are characteristic of progressive uplift and erosion of a 
basement-cored structure; however, they are mineralogi- 
cally very similar. The same basic grain types are present in 
all facies, and differences are in relative proportion rather 
than kind. This compositional similarity strongly suggests 
that the Fort Union and Wasatch sedimentary rocks have, at 
least in part, a common provenance. Because the con­ 
glomerates of the Wasatch Formation (Kingsbury Con­ 
glomerate Member and Moncrief Member) are well 
established as alluvial fan deposits shed from the eastern 
front of the Bighorn Mountains (Sharp, 1948; Mapel, 1959), 
the similarity argues that the provenance of the Tongue 
River also is the Bighorn Mountains (Whipkey and others, 
1987). Such a conclusion is bolstered by the proximity of 
Tongue River outcrops to the uplift margin, by sedimentary

structures indicating eastward paleotransport in the TA Hills 
(Weaver and Flores, 1985), by the ubiquitous presence of 
nondurable glauconite grains, and by the pebbly to con­ 
glomeratic character of many sandstones of the upper part 
of the Fort Union Formation.

Lower Petrographic Facies

The lowest petrographic episode consists of accumu­ 
lation of large amounts of rounded, monocrystalline, prob­ 
ably recycled quartz in sandstones of both the Lebo and the 
lower part of the Tongue River Members of the Fort Union 
Formation. This mineralogy is consistent with the sample 
from the Tullock Member of the Fort Union. The channel 
sandstones contain subordinate chert grains, and many 
contain trace amounts of detrital glauconite, a mineral that 
is unstable during freshwater transport. This characteristic 
mineralogy strongly indicates proximity to a source of 
friable clastic sedimentary strata, some of which contain 
appreciable amounts of glauconite. Local chert-pebble con­ 
glomeratic lenses in channelized sandstones of both the 
Lebo and the lower part of the Tongue River indicate that 
fairly competent, high-gradient drainage systems existed 
adjacent to the present Bighorn Mountains in both middle 
and late Paleocene time.

These observations all point to the start of uplift and 
erosion of the Bighorn Mountains by at least middle 
Paleocene time. The body of friable Mesozoic strata that 
formerly overlaid the mountains is the probable source of 
much of the sediment associated with sandstones of the 
lower petrographic facies. Sandy Cretaceous strata (Lance 
Formation) may have been stripped to provide sands to the 
Tullock depositional sites, whereas thick, younger Creta­ 
ceous shales provided a local source for the voluminous 
lacustrine mudstones of the Lebo Member. Younger quartz- 
dominated channel sandstones of the lower part of the 
Tongue River Member reflect erosion of the more sandstone 
dominated lower Mesozoic rocks in the mountains. The 
abundant cherty pebbles in the conglomeratic channels of 
the Tongue River, as well as the large amounts of chert in 
the sand fraction of those rocks, are difficult to explain at 
this time. Erosion of one of the locally chert rich areas of the 
Lower Cretaceous Cleverly Formation is a one explanation. 
Another is deep tributary dissection along the front of the 
uplift that may locally have exposed more deeply buried 
cherty rocks of the Paleozoic marine sequence. Such deeply 
entrenched tributaries characterize the present-day eastern 
slope of the Bighorn Mountains.

Middle Petrographic Facies

A marked increase in carbonate rock fragments 
(calcite and dolomite) is the distinctive feature of the middle 
petrographic facies (upper part of the Tongue River
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Member). Quartz, although less common, retains the 
rounded, monocrystalline character of the lower facies. 
Chert continues to be a relatively constant subordinate grain 
type. Fragments of carbonate in some chert grains suggest 
that the chert represents replacement of limestone or 
dolomite in the source rock area. Glauconite is also a 
ubiquitous trace mineral that, at times, is present within 
carbonate grains.

Paleocurrent measurements of channel sandstones in 
the TA Hills (area 3, fig. 4) indicate an eastward-flowing 
drainage network (Weaver and Flores, 1985). The coarse­ 
ness of these sandstones suggests that the stream gradient 
was relatively high. The high stream gradient and the 
relatively high detrital carbonate content indicate that by the 
time of deposition of the upper part of the Tongue River 
continued uplift of the Bighorn Mountains had exposed the 
carbonate-rich Paleozoic sequence to extensive erosion. 
Concurrent erosion of previously exposed clastic-rich 
Mesozoic strata continued to supply quartz, glauconite, and 
finer grained detritus into these fluvial systems.

Upper Petrographic Facies

Feldspar is a major framework grain type in the 
sandstones of the upper petrographic facies (Wasatch 
Formation), and mica booklets are a common minor 
component. Detrital carbonate and chert grains, which are 
abundnant in the middle facies, are relatively unimportant. 
The sudden decrease in carbonate grains may be explained 
in part by dissolution and subsequent recrystallization to 
form the abundant carbonate cement in the Wasatch 
Formation. Rounded, monocrystalline quartz is the major 
quartz type, but polycrystalline varieties are proportionally 
more abundant than in the other two facies. As in the other 
facies, detrital glauconite is a distinctive trace mineral.

This change in mineralogy, particularly the increases 
in amounts of feldspar and mica, strongly suggests renewed 
uplift and widespread exposure of the intrusive igneous and 
high-grade metamorphic core of the Bighorn Mountains 
during deposition of the Wasatch Formation. This renewed 
uplift may reflect major thrusting reported by Grow and 
others (1988) along the mountain front northwest of Buffalo 
(fig. 1) that juxtaposed Precambrian igneous gneiss atop the 
Fort Union Formation.

LATERAL VARIATION WITHIN THE 
TONGUE RIVER MEMBER

Sample Localities

Rocks now exposed along the crest of the Bighorn 
Mountains in Wyoming (fig. 3) are Paleozoic carbonate 
rocks in the south and Precambrian crystalline rocks in the

north. Samples were collected from outcrops of the Tongue 
River Member within three general areas along the Bighorn 
Mountains (areas 3, 4, and 5 of fig. 7) in order to determine 
if a corresponding mineralogical change could be detected. 
These samples were restricted to the upper, detrital- 
carbonate-enriched-sandstone part of the Tongue River in 
the TA Hills (area 3) and the Castle Rock vicinity (area 4). 
Channel-fill sandstones of the Tongue River (area 5), 
showing north to northeast paleotransport directions (Toth, 
1982), were sampled from both the middle and upper parts 
of the Tongue River Member. Preliminary paleobotanical 
correlations suggest that the base of the carbonate-bearing 
sandstones is correlative between areas 3 and 4 but is older 
northward, toward area 5.

Additional sandstone samples were collected from the 
valley of the Powder River (area 6, fig. 7) to determine 
whether the mineralogy of Tongue River channel fills in the 
center of the basin is compatible with eastward transport 
from the Bighorn uplift. Here, paleotransport of channel 
sandstones ranges from northeast to southeast (Canavello, 
1980; Lynn, 1980).

Sandstone Mineralogy Groupings

Sandstone samples from the TA Hills and Castle 
Rock areas (areas 3 and 4), which were obtained from the

107° 105°

50 MILES

Figure 7. Sample areas used to determine lateral variation in 
mineralogy of the Tongue River Member of the Fort Union 
Formation in the Powder River Basin. Sample numbers for 
areas are given in table 1.
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Figure 8. Ternary diagram showing the composition of 
sandstones from the Tongue River Member of the Fort Union 
Formation in the Powder River Basin. Areas: open circle 
indicates west-central areas; solid circle indicates Powder 
River valley of the northern areas; solid square indicates 
Tongue River valley of the northern areas. Q indicates quartz 
plus chert; F indicates feldspar plus granitic rock fragments; L 
indicates lithic fragments.

carbonate-enriched middle petrographic facies (upper part 
of Tongue River Member) described earlier, plot very near 
to the Q-L line on the ternary diagram (fig. 8). The 
remaining samples, from the Tongue River and Powder 
River valleys (areas 5 and 6), form a statistically distinct 
(chi-square, 0.05 level) dispersed group of sandstones. 
Although these samples contain carbonate grains, they are 
also markedly enriched in feldspar grains.

No difference can be detected using either figure 8 or 
chi-square tests between the modal mineralogy of sand­ 
stones of the Tongue River and Powder River valleys or 
between that of the TA Hills and Castle Rock areas. Data 
from these areas are therefore pooled into "northern areas" 
and "west-central areas," respectively, in much of the 
following discussion.

Textures

Mean grain size (table 6) is uniformly in the fine sand 
range (2-3 phi). Mean grain size for samples from the 
Tongue River and Powder River drainages (northern areas) 
is 2.45 phi (s=0.20 phi) and 2.32 phi (s=0.30 phi), 
respectively; whereas, that for samples from the TA Hills 
and Castle Rock areas (west-central areas) are 2.53 phi 
(s=0.6 phi) and 2.50 phi (s=0.26 phi).

Rounding of grains is markedly different in the 
west-central areas and the northern areas. Quartz grains 
from the northern areas are subangular (average rho=2.8

and 2.7 for the Tongue River and Powder River drainages, 
respectively, on Power's scale), whereas those from the 
west-central areas are more commonly subrounded (average 
rho=3.5 and 4.0 for the TA Hills and Castle Rock areas, 
respectively).

Mineralogy

General trends noted on the ternary diagram are 
shown in more detail in the plot of major mineral 
constituents (fig. 9). Sandstones from the Powder River and 
Tongue River drainages (samples 31^-5) of the northern 
areas are considerably enriched in feldspar and moderately 
rich in mica booklets and rock fragments (other than chert 
and carbonate). On the other hand, sandstones from the TA 
Hills (samples 17-26) and Castle Rock (samples 14-16) of 
the west-central areas contain more carbonate rock 
fragments and quartz.

Quartz

The mean quartz content of carbonate-bearing facies 
of the west-central areas is 69.5 percent (s=8.8 percent); 
polycrystalline quartz accounts for 5.6 percent of this total 
(table 4). The quartz content in the northern areas is 
significantly less (t-test, 0.05 level), 59.7 percent (s=7.8 
percent) of framework grains. Polycrystalline quartz, 
however, is distinctly more abundant (ANOVA-DMR, 0.05 
level) in the northern areas, where it is 16.3 percent (s=8.6 
percent) of the total quartz. The proportion of polycrystal­ 
line quartz within the northern areas decreases significantly 
eastward (ANOVA-DMR, 0.05 level) between the Tongue 
River (23.4 percent of quartz; s=9.1 percent) and the 
Powder River drainages (11.6 percent of total quartz; s=4.1 
percent).

The lower total quartz content in the northern areas 
reflects the higher proportion of feldspar, mica, and mica­ 
ceous rock fragments. The concurrent proportional increase 
in the percentage of polycrystalline quartz indicates that 
much of the detritus was derived from first-cycle erosion of 
nearby granitic or high-grade metamorphic terranes. The 
basinward decrease in polycrystalline quartz content 
(Powder River valley) suggests longer transport distances, 
consistent with reported eastward paleocurrent indicators.

Feldspar

Untwinned varieties of feldspar (generally orthoclase) 
make up 80 percent of the total feldspar. Grid-twinned 
(microcline; 8.5 percent) and albite-twinned (plagioclase; 
11.6 percent) feldspar and perthite are less common 
(table 4). Feldspar grains in rocks of the Tongue River 
Member of the northern areas have been replaced by 
carbonate cement, as discussed earlier in the discussion of
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Sample location Sample 
number

Percentage of framework grains

Quartz Feldspar Mica Carbonate 
40 100 0 40 0 10 0 40

Chert
Glauconite 

present?
40

Other constituents

Matrix Cement 
0 50 0 60

Powder River 
Valley

45
44
43
42
41
40
39
38
37

Tongue River 
Valley

36
35
34
33
32

Castle Rock 
area

16
15

JL4_

TA Hills area

26
25
24
23
22
21
20
19
18
17

Figure 9. Point-count data for the Tongue River Member of the Fort Union Formation, Powder River Basin. Clastic grains are 
expressed as percentages of total framework grains; matrix and cement are represented as percentages of the total volume of the 
sample. The presence of glauconite (always less than 1 percent) is indicated. Point-count values are given in tables 2-6.

samples of the upper petrographic facies. Partly consumed 
grains are common, and some of the grains may be totally 
replaced. Therefore, the content of feldspar actually 
determined for the northern areas probably represents a 
minimum value.

Feldspar content increases markedly northward. Feld­ 
spar makes up about 2 percent of framework grains in 
sandstones of the west-central areas, detectably (t-test, 0.05 
level) less than an average of 10.1 percent in the northern 
areas (an individual thin section contains as much as 21 
percent). No basinward differences could be detected (t-test, 
0.05 level) between the two areas of the northern areas.

Feldspar distribution in the upper sandstones of the 
Tongue River probably is closely related to rock types now 
exposed in the Bighorn Mountains. Granitic and high-grade 
metamorphic rocks crop out in the northern part of the uplift 
in Wyoming (fig. 3), whereas Paleozoic rocks cap the 
southern part. The TA Hills sample area is approximately 
east of the present-day surface contact of these two rock 
types. One fault block lying to the west of the Castle Rock 
sample area does expose Precambrian basement, but much 
of the movement along its underlying fault(s) postdates the 
early Tertiary.

Mica

Mica booklets are a minor component of Tongue 
River Member rocks. They make up less than 1 percent of

the framework grains in the west-central areas and slightly 
more than 1 percent in the northern areas. The most 
common types of mica are muscovite, biotite, and chlorite. 
The small amounts of mica are compatible with the lack of 
major outcrops of schistose rocks in the northern Bighorn 
Mountains.

Cherty Fragments

No major variations in total chert content were noted 
between the sampled areas, although the amount of chert 
varies considerably from sample to sample (table 5). Mean 
content of cherty rock fragments is 10.1 percent (s=7.1 
percent) in the west-central areas and 12.5 percent (s=4.7 
percent) in the northern areas.

Carbonate Rock Fragments

Carbonate clasts are significantly (t-test, 0.05 level) 
less common (less than 7 percent) in the northern areas than 
in the west-central areas, perhaps in part because of dis­ 
solution of carbonate grains to form the carbonate cement 
common (fig. 9) in sandstones of the northern areas. In great 
part, however, the lesser amounts of carbonate grains 
probably reflect the smaller outcrop areas of carbonate rock 
types in the northern area of the uplift during uncovering of 
the Precambrian crystalline rocks. A more rapid rate of 
erosion in the northern Bighorn Mountains may also
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explain the presence of carbonate fragments stratigraphi- 
cally lower in the north than along the west-central basin 
margin.

quartz. Similarly, the apparent paucity of sandstones as 
coarse as fine to medium grained east of Gillette can be 
explained by such a paleogeographic model.

Other Rock Fragments

Rock fragments other than carbonate and chert are 
more abundant in the northern areas (more than 8 percent) 
than in the west-central areas (about 2 percent). These 
consist primarily of high-grade (schistose) and low-grade 
(phyllitic and slaty) metamorphic rock fragments and some 
shale fragments and a few granitic rock fragments. Similar 
to the variation in carbonate content, this difference in 
abundance probably mirrors the exposed rocks of the 
adjacent uplift.

Within the northern areas, rock fragment content 
detectably decreases eastward (t-test, 0.05 level) from the 
Tongue River valley (about 10 percent) to the Powder River 
valley (about 5 percent). Similar to the equivalent eastward 
decrease in polycrystalline quartz, this decrease may be 
caused by progressive destruction with increased transport 
distance (Davies and Ethridge, 1975).

Glauconite

Glauconite is present in trace amounts in all of the 
samples from the west-central areas but in only 6 of 15 
samples from the northern areas. This difference can be 
explained by the proximity of the basin-margin sandstones 
to probable Mesozoic-age source rocks.

Discussion and Interpretation

Changes in sandstone mineralogy within the 
carbonate-bearing facies of the Tongue River Member of 
the west-central areas closely parallel differences in poten­ 
tial source rocks now exposed along the crest of the Bighorn 
Mountains. In the south, only the Bighorn Mountains 
Phanerozoic cover rocks were eroded and transported into 
the west-central areas. In the north, the greater amounts of 
feldspar, metamorphic rock fragments, and polycrystalline 
quartz suggest that detritus from exposed intrusive and 
high-grade metamorphic rocks was being deposited in the 
northern part of the basin.

Westward-flowing paleotransport for the Tongue 
River Member (for example, Ayers, 1986) is unlikely to 
have introduced basement-derived feldspathic detritus into 
the northern part of the basin because there are few outcrops 
of coarsely crystalline intrusive or metamorphic potential 
source rocks in the Black Hills. The reported generally 
northeastward paleotransport directions (Canavello, 1980; 
Lynn, 1980; Toth, 1982) for the interval are consistent with 
the easterly decline in mechanically less durable grain types 
such as metamorphic rock fragments and polycrystalline

SUMMARY AND CONCLUSIONS

Early Tertiary deposition within the Powder River 
Basin in Wyoming was strongly dependent upon an episode 
of tectonic uplift of the Bighorn Mountains that extended 
from at least middle Paleocene into Eocene time. Grain 
types derived from the erosion of this uplift indicate that the 
northerly change from exposed Paleozoic strata to Pre- 
cambrian core along the present-day crest of the Bighorn 
Mountains developed during this early Tertiary tectonic 
episode.

Subsidence along the western margin of the basin was 
in progress by the middle Paleocene and led to the forma­ 
tion of the extensive Lebo lake. Mud-dominated sediments 
of the lake probably reflect early transfer of large volumes 
of uplifted Cretaceous shale from the mountains into the 
western flank of the basin. Pebbly sand channel fills in 
lacustrine mudstones of the Lebo Member along the western 
margin of the basin attest to substantial local relief 
associated with deeply entrenched drainage tributaries.

By late Paleocene time, the subsidence rate for the 
basin was more closely matched by the rate of detrital 
influx, and sandy fluvial systems of the Tongue River 
Member prograded eastward into the central part of the 
basin. Paleozoic marine sequences exposed in the southern 
mountains provided carbonate-rich sands to the fluvial 
systems of the upper part of the Tongue River along the 
west-central basin margin. Uplift and erosion probably was 
greater in the northern Bighorn Mountains. Stratigraphically 
equivalent channels in the adjacent northern basin area 
transported feldspar grains, coarse mica, metamorphic rock 
fragments, and complex quartz types in sands derived from 
the Precambrian core of the uplift.

Renewed uplift of the Bighorn Mountains during the 
Eocene (Grow and others, 1988) led to deposition of the 
conglomerates of the Kingsbury Conglomerate Member and 
Moncrief Member of the Wasatch Formation along the 
eastern flank of the mountains (Seeland, 1985). Feldspathic 
sandstones of the Wasatch Formation, deposited by a 
network of eastward-flowing fluvial systems, characterize 
Eocene rocks across most of the western half of the Powder 
River Basin.
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